An Advanced Hall Element Array-Based Device for High-Resolution Magnetic Field Mapping

Author:

Zhou Tan1,Cai Jiangwei1,Zhu Xin12

Affiliation:

1. School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215000, China

2. Suzhou Matrix Semiconductor Ltd., Suzhou 215000, China

Abstract

The precise mapping of magnetic fields emitted by various objects holds critical importance in the fabrication of industrial products. To meet this requirement, this study introduces an advanced magnetic detection device boasting high spatial resolution. The device’s sensor, an array comprising 256 unpackaged gallium arsenide (GaAs) Hall elements arranged in a 16 × 16 matrix, spans an effective area of 19.2 mm × 19.2 mm. The design maintains a 1.2 mm separation between adjacent elements. For enhanced resolution, the probe scans the sample via a motorized rail system capable of executing specialized movement patterns. A support structure incorporated into the probe minimizes the measurement distance to below 0.5 mm, thereby amplifying the magnetic signal and mitigating errors from nonparallel probe–sample alignment. The accompanying interactive software utilizes cubic spline interpolation to transform magnetic readings into detailed two- and three-dimensional magnetic field distribution maps, signifying field strength and polarity through variations in color intensity and amplitude sign. The device’s efficacy in accurately mapping surface magnetic field distributions of magnetic and magnetized materials was corroborated through tests on three distinct samples: a neodymium–iron–boron magnet, the circular magnetic array from a smartphone, and a magnetized 430 steel plate. These tests, focused on imaging quality and magnetic field characterization, underscore the device’s proficiency in nondestructive magnetic field analysis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3