Advanced Image Stitching Method for Dual-Sensor Inspection

Author:

Shahsavarani Sara1ORCID,Lopez Fernando2ORCID,Ibarra-Castanedo Clemente1ORCID,Maldague Xavier P. V.1ORCID

Affiliation:

1. Computer Vision and Systems Laboratory (CVSL), Department of Electrical and Computer Engineering, Faculty of Science and Engineering, Laval University, Quebec City, QC G1V 0A6, Canada

2. TORNGATS, 200 Boul. du Parc-Technologique, Quebec City, QC G1P 4S3, Canada

Abstract

Efficient image stitching plays a vital role in the Non-Destructive Evaluation (NDE) of infrastructures. An essential challenge in the NDE of infrastructures is precisely visualizing defects within large structures. The existing literature predominantly relies on high-resolution close-distance images to detect surface or subsurface defects. While the automatic detection of all defect types represents a significant advancement, understanding the location and continuity of defects is imperative. It is worth noting that some defects may be too small to capture from a considerable distance. Consequently, multiple image sequences are captured and processed using image stitching techniques. Additionally, visible and infrared data fusion strategies prove essential for acquiring comprehensive information to detect defects across vast structures. Hence, there is a need for an effective image stitching method appropriate for infrared and visible images of structures and industrial assets, facilitating enhanced visualization and automated inspection for structural maintenance. This paper proposes an advanced image stitching method appropriate for dual-sensor inspections. The proposed image stitching technique employs self-supervised feature detection to enhance the quality and quantity of feature detection. Subsequently, a graph neural network is employed for robust feature matching. Ultimately, the proposed method results in image stitching that effectively eliminates perspective distortion in both infrared and visible images, a prerequisite for subsequent multi-modal fusion strategies. Our results substantially enhance the visualization capabilities for infrastructure inspection. Comparative analysis with popular state-of-the-art methods confirms the effectiveness of the proposed approach.

Funder

The Natural Sciences and Engineering Council of Canada (NSERC), CREATE-oN DuTy Program

Canada Research Chair in Multipolar Infrared Vision

Canada Foundation for Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3