Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks

Author:

Zhong Chaowen,Yan KeORCID,Dai Yuting,Jin Ning,Lou Bing

Abstract

Automated fault diagnosis (AFD) for various energy consumption components is one of the main topics for energy efficiency solutions. However, the lack of faulty samples in the training process remains as a difficulty for data-driven AFD of heating, ventilation and air conditioning (HVAC) subsystems, such as air handling units (AHU). Existing works show that semi-supervised learning theories can effectively alleviate the issue by iteratively inserting newly tested faulty data samples into the training pool when the same fault happens again. However, a research gap exists between theoretical AFD algorithms and real-world applications. First, for real-world AFD applications, it is hard to predict the time when the same fault happens again. Second, the training set is required to be pre-defined and fixed before being packed into the building management system (BMS) for automatic HVAC fault diagnosis. The semi-supervised learning process of iteratively absorbing testing data into the training pool can be irrelevant for industrial usage of the AFD methods. Generative adversarial network (GAN) is well-known as an unsupervised learning technique to enrich the training pool with fake samples that are close to real faulty samples. In this study, a hybrid generative adversarial network (GAN) is proposed combining Wasserstein GAN with traditional classifiers to perform fault diagnosis mimicking the real-world scenarios with limited faulty training samples in the training process. Experimental results on real-world datasets demonstrate the effectiveness of the proposed approach for fault diagnosis problems of AHU subsystem.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3