Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation

Author:

Voldsund Mari,Gardarsdottir StefaniaORCID,De Lena Edoardo,Pérez-Calvo José-Francisco,Jamali Armin,Berstad David,Fu Chao,Romano Matteo,Roussanaly SimonORCID,Anantharaman Rahul,Hoppe Helmut,Sutter Daniel,Mazzotti Marco,Gazzani MatteoORCID,Cinti Giovanni,Jordal Kristin

Abstract

A technical evaluation of CO2 capture technologies when retrofitted to a cement plant is performed. The investigated technologies are the oxyfuel process, the chilled ammonia process, membrane-assisted CO2 liquefaction, and the calcium looping process with tail-end and integrated configurations. For comparison, absorption with monoethanolamine (MEA) is used as reference technology. The focus of the evaluation is on emission abatement, energy performance, and retrofitability. All the investigated technologies perform better than the reference both in terms of emission abatement and energy consumption. The equivalent CO2 avoided are 73–90%, while it is 64% for MEA, considering the average EU-28 electricity mix. The specific primary energy consumption for CO2 avoided is 1.63–4.07 MJ/kg CO2, compared to 7.08 MJ/kg CO2 for MEA. The calcium looping technologies have the highest emission abatement potential, while the oxyfuel process has the best energy performance. When it comes to retrofitability, the post-combustion technologies show significant advantages compared to the oxyfuel and to the integrated calcium looping technologies. Furthermore, the performance of the individual technologies shows strong dependencies on site-specific and plant-specific factors. Therefore, rather than identifying one single best technology, it is emphasized that CO2 capture in the cement industry should be performed with a portfolio of capture technologies, where the preferred choice for each specific plant depends on local factors.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference61 articles.

1. Technology Roadmap: Low-Carbon Transition in the Cement Industry,2018

2. Deployment of CCS in the Cement Industry,2013

3. CSI (Cement Sustainability Initiative),2017

4. 2013/163/EU: Commission Implementing Decision of 26 March 2013 establishing the best available techniques (BAT) conclusions under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions for the production of cement, lime and magnesium oxide;Potocnik;Off. J. Eur. Union,2013

5. Assessing the value of retrofitting cement plants for carbon capture: A case study of a cement plant in Guangdong, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3