Reliability Enhancement in Power Networks under Uncertainty from Distributed Energy Resources

Author:

Ndawula Mike,Djokic Sasa,Hernando-Gil IgnacioORCID

Abstract

This paper presents an integrated approach for assessing the impact that distributed energy resources (DERs), including intermittent photovoltaic (PV) generation, might have on the reliability performance of power networks. A test distribution system, based on a typical urban MV and LV networks in the UK, is modelled and used to investigate potential benefits of the local renewable generation, demand-manageable loads and coordinated energy storage. The conventional Monte Carlo method is modified to include time-variation of electricity demand profiles and failure rates of network components. Additionally, a theoretical interruption model is employed to assess more accurately the moment in time when interruptions to electricity customers are likely to occur. Accordingly, the impact of the spatio-temporal variation of DERs on reliability performance is quantified in terms of the effect of network outages. The potential benefits from smart grid functionalities are assessed through both system- and customer-oriented reliability indices, with special attention to energy not supplied to customers, as well as frequency and duration of supply interruptions. The paper also discusses deployment of an intelligent energy management system to control local energy generation-storage-demand resources that can resolve uncertainties in renewable-based generation and ensure highly reliable and continuous supply to all connected customers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. Balancing Serviceshttps://www.nationalgrideso.com/balancing-services

2. Adaptive Control for Energy Storage Systems in Households With Photovoltaic Modules

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3