Impact of Partial Pressure, Conversion, and Temperature on the Oxidation Reaction Kinetics of Cu2O to CuO in Thermochemical Energy Storage

Author:

Setoodeh Jahromy Saman,Birkelbach Felix,Jordan Christian,Huber Clemens,Harasek MichaelORCID,Werner Andreas,Winter Franz

Abstract

Metal oxides are promising potential candidates for thermochemical energy storage in concentrated solar power plants. In particular, the Cu2O/CuO system is suitable because of its high energy density, applied temperature interval, and reduced cost compared to the CoO/Co3O4 system. In heterogenous gas-solid reactions, the pressure affects the kinetics significantly. To quantify this effect for oxidation of Cu2O to CuO, isothermal runs between 800 °C and 930 °C at different oxygen partial pressures (0.1, 0.2, 0.5, and 1.0 bar) were conducted with thermogravimetric analysis (TGA). Defined fractions of CuO samples (1–100 µm) were analyzed with X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM) analysis. The kinetic analyses were performed with extended non-parametric kinetics (NPK), which is applied for the first time to consider the pressure term in the general kinetic equation in addition to the conversion and the temperature term. The results show how the oxygen partial pressure impacts the kinetics and how reparameterization of the pressure term affects the kinetic analysis of the oxidation reaction of Cu2O to CuO. The best conversion model is a two-dimensional Avrami-Erofeev model with an activation energy of 233 kJ/mol. The kinetic models for conversion, temperature, and pressure presented in this work provide one of the most important requirements for reactor designs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3