Experimental Study on the Dynamic Fracture Characteristics of Mortar–Rock Interface Zones with Different Interface Inclinations and Shapes

Author:

Li Zhaoqi1,Dong Jie12,Jiang Tao1,Feng Kai1,Cheng Siwu1,Liu Yuqian1,Zhang Guoxiang3,Tian Xuewei3

Affiliation:

1. College of Civil Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

2. Hebei Colleges Applied Technology Research Center of Green Building Materials and Building, Reconstruction, Zhangjiakou 075000, China

3. China Railway Design Group Limited, Tianjin 300380, China

Abstract

There has been little research on the impact resistance of mortar–rock slope protection structures. To ensure that the mortar–rock interface has good adhesion properties under the action of impact loading, in this paper, based on fracture mechanics theory, a theoretical impact model was established for mortar–rock binary material. Dynamic fracture tests were carried out on mortar–rock interfaces using the split-Hopkinson pressure bar (SHPB) system. The Brazilian disc (CSTBD) specimen was prepared with one half in granite and the other half in mortar. The specimen used for the dynamic impact test was 48 mm in diameter and 25 mm thick. The effects caused by the change in interface inclination and interface shape on the dynamic fracture mode were discussed. The dynamic model parameters were obtained for different inclination angles and interfaces. The results show that both the interface inclination and interface shape have significant effects on the dynamic mechanical properties of the mortar–rock binary material. The fracture modes of the mortar–rock specimens can be classified into three types. When the interface inclination is 0°, the specimen shows shear damage with an interface fracture; when the interface inclination is in the range of 0–90°, the dynamic splitting strength of the mortar–rock material increases with increasing interface inclination, and the interface undergoes composite fracture; and when the interface inclination is 90°, the dynamic splitting strength of the specimen reaches its peak, and the interface undergoes tensile fracture. The mortar–rock interface damage follows the M-C criterion. The roughness of the interface shape has a large influence on the dynamic splitting strength of the specimens. The rougher the interface shape, the higher the interface cleavage strength and the higher the peak load that causes the material to damage. The results of this study can provide a reference for the design of mortar–rubble structures to meet the demand for impact resistance and have strong engineering application value.

Funder

Natural Science Foundation of Hebei Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3