Laser Melting of Prefabrication AlOOH-Activated Film on the Surface of Nodular Cast Iron and Its Associated Properties

Author:

Zhang Xiaoyu12,Yin Xiuyuan12,Liu Chen12ORCID,Liu Changsheng12ORCID

Affiliation:

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

2. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China

Abstract

This study aimed to improve the absorption rate of laser energy on the surface of nodular cast iron and further improve its thermal stability and wear resistance. After a 0.3 mm thick AlOOH activation film was pre-sprayed onto the polished surface of the nodular cast iron, a GWLASER 6 kw fiber laser cladding system was used to prepare a mixed dense oxide layer mainly composed of Al2O3, Fe3O4, and SiO2 using the optimal laser melting parameters of 470 W (laser power) and 5.5 mm/s (scanning speed). By comparing and characterizing the prefabricated laser-melted surface, the laser-remelted surface with the same parameters, and the substrate surface, it was found that there was little difference in the structure, composition, and performance between the laser-remelted surface and the substrate surface except for the morphology. The morphology, structure, and performance of the laser-melted surface underwent significant changes, with a stable surface line roughness of 0.9 μm and a 300–400 μm deep heat-affected zone. It could undergo two 1100 °C thermal shock cycles; its average microhardness increased by more than one compared to the remelted and substrate surfaces of 300 HV, with a maximum hardness of 900 HV; and the average friction coefficient and wear quantity decreased to 0.4370 and 0.001 g, respectively. The prefabricated activated film layer greatly improved the thermal stability and wear resistance of the nodular cast iron surface while reducing the laser melting power.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3