A Novel Experimental Approach to Understand the Transport of Nanodrugs

Author:

Palchoudhury Soubantika1ORCID,Das Parnab2,Ghasemi Amirehsan3ORCID,Tareq Syed Mohammed4,Sengupta Sohini1,Han Jinchen1ORCID,Maglosky Sarah1,Almanea Fajer1,Jones Madison1,Cox Collin1,Rao Venkateswar1

Affiliation:

1. Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA

2. Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA

3. The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 444 Greve Hall, 821 Volunteer Blvd., Knoxville, TN 37996-3394, USA

4. Civil and Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, USA

Abstract

Nanoparticle-based drugs offer attractive advantages like targeted delivery to the diseased site and size and shape-controlled properties. Therefore, understanding the particulate flow of the nanodrugs is important for effective delivery, accurate prediction of required dosage, and developing efficient drug delivery platforms for nanodrugs. In this study, the transport of nanodrugs including flow velocity and deposition is investigated using three model metal oxide nanodrugs of different sizes including iron oxide, zinc oxide, and combined Cu-Zn-Fe oxide synthesized via a modified polyol approach. The hydrodynamic size, size, morphology, chemical composition, crystal phase, and surface functional groups of the water-soluble nanodrugs were characterized via dynamic light scattering, transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray, X-ray diffraction, and fourier transform infrared spectroscopy, respectively. Two different biomimetic flow channels with customized surfaces are developed via 3D printing to experimentally monitor the velocity and deposition of the different nanodrugs. A diffusion dominated mechanism of flow is seen in size ranges 92 nm to 110 nm of the nanodrugs, from the experimental velocity and mass loss profiles. The flow velocity analysis also shows that the transport of nanodrugs is controlled by sedimentation processes in the larger size ranges of 110–302 nm. However, the combined overview from experimental mass loss and velocity trends indicates presence of both diffusive and sedimentation forces in the 110–302 nm size ranges. It is also discovered that the nanodrugs with higher positive surface charges are transported faster through the two test channels, which also leads to lower deposition of these nanodrugs on the walls of the flow channels. The results from this study will be valuable in realizing reliable and cost-effective in vitro experimental approaches that can support in vivo methods to predict the flow of new nanodrugs.

Funder

AFRL/DAGSI Ohio-Student Faculty fellowship

University of Dayton’s (UD) 2022 Research Council Summer grant

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3