Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating

Author:

Wang Lei1,Okugawa Masayuki12ORCID,Konishi Hirokazu1,Liu Yuheng1,Koizumi Yuichiro12ORCID,Nakano Takayoshi12ORCID

Affiliation:

1. Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

2. Anisotropic Design & Additive Manufacturing Research Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

Abstract

The limited wear resistance of commercially pure titanium (CP-Ti) hinders its use in abrasive and erosive environments, despite its good strength–weight ratio and corrosion resistance. This paper reports the first study proposing a novel method for wear-resistant TiNi coating through Ni plating and electron beam (EB) irradiation in an in situ synthetic approach. Single-track melting experiments were conducted using the EB to investigate the feasibility of forming a TiNi phase by fusing the Ni plate with the CP-Ti substrate. Varying beam powers were employed at a fixed scanning speed to determine the optimal conditions for TiNi phase formation. The concentration of the melt region was found to be approximate as estimated from the ratio of the Ni-plate thickness to the depth of the melt region, and the region with Ni-48.7 at.% Ti was successfully formed by EB irradiation. The study suggests that the mixing of Ti atoms and Ni atoms was facilitated by fluid flow induced by Marangoni and thermal convections. It is proposed that a more uniform TiNi layer can be achieved through multi-track melting under appropriate conditions. This research demonstrates the feasibility of utilizing EB additive manufacturing as a coating method and the potential for developing TiNi coatings with shape memory effects and pseudoelasticity.

Funder

JSPS KAKENHI

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3