Effects of Heat Treatment on Microstructure and Mechanical Properties of Weldable Al–Mg–Zn–Sc Alloy with High Strength and Ductility

Author:

Jiang Long1234,Zhang Zhifeng134,Bai Yuelong134,Mao Weimin2

Affiliation:

1. National Engineering Research Center for Non-Ferrous Metal Composites, China GRINM Group Co., Ltd., Beijing 100088, China

2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Grinm Metal Composites Technology Co., Ltd., Beijing 100088, China

4. General Research Institute for Nonferrous Metals, Beijing 100088, China

Abstract

A weldable Al–Mg–Zn–Sc alloy was produced using vacuum induction melting and an argon-protected casting method to achieve high strength and ductility, and the effects of heat treatment on the microstructure evolution and mechanical properties of Al–Mg–Zn–Sc alloys were comparatively investigated. The results reveal that fine equiaxed grains with an average grain size of 40 μm in an as-cast Al–Mg–Zn–Sc alloy change little after heat treatments, bringing about a grain-boundary strengthening of 46.1 MPa. The coarse T-Mg32(Al, Zn)49 phases at grain boundaries are completely dissolved into the matrix through solid-solution treatment, and T-Mg32(Al, Zn)49 with diameters ranging from 10 to 25 nm and Al3Sc with diameters ranging from 5 to 20 nm gradually precipitate during the artificial aging process. The Mg solid solubility is 4.67% in the as-cast Al–Mg–Zn–Sc alloy, and it increased to 5.33% after solid-solution treatment and dramatically decreased to 4.15% after post-aging treatment. The contributions of solid-solution strengthening to as-cast, post-solid-solution and post-aging Al–Mg–Zn–Sc alloys are 78.2 MPa, 85.4 MPa and 72.3 MPa, respectively. The precipitation strengthening of the post-aging alloy is 49.7 MPa, which is an increase of 21% in comparison to that of both as-cast and post-solid-solution alloys. The alloy achieves an optimal tensile strength of 355.3 MPa, yield strength of 175 MPa and elongation of 22% after undergoing solid-solution treatment.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3