Abstract
Indoor navigation has been developing rapidly over the last few years. However, it still faces a number of challenges and practical issues. This paper proposes a novel WiFi/MEMS integration structure for indoor navigation. The two-stage structure uses the extended Kalman filter (EKF) to fuse the information from WiFi/MEMS sensors and contains attitude-determination EKF and position-tracking EKF. In the WiFi part, a partition solution called “moving partition” is originally proposed in this paper. This solution significantly reduces the computation time and enhances the performance of the traditional Weighted K-Nearest Neighbors (WKNN) method. Furthermore, the direction measurement is generated utilizing WiFi positioning results, and a “turn detection” is implemented to guarantee the effectiveness. The navigation performance of the presented integration structure has been verified through indoor experiments. The test results indicate that the proposed WiFi/MEMS solution works well. The root mean square (RMS) position error of WiFi/MEMS is 0.7926 m, which is an improvement of 20.59% and 36.60% when compared to MEMS and WiFi alone. Besides, the proposed algorithm still performs well with very few access points (AP) available and its stability has been proven.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献