Development and Validation of a Smartphone-Based Near-Infrared Optical Imaging Device to Measure Physiological Changes In-Vivo

Author:

Kaile Kacie,Godavarty Anuradha

Abstract

Smartphone-based technologies for medical imaging purposes are limited, especially when it involves the measurement of physiological information of the tissues. Herein, a smartphone-based near-infrared (NIR) imaging device was developed to measure physiological changes in tissues across a wide area and without contact. A custom attachment containing multiple multi-wavelength LED light sources (690, 800, and 840 nm; and <4 mW of optical power per LED), source driver, and optical filters and lenses was clipped onto a smartphone that served as the detector during data acquisition. The ability of the device to measure physiological changes was validated via occlusion studies on control subjects. Noise removal techniques using singular value decomposition algorithms effectively removed surface noise and distinctly differentiated the physiological changes in response to occlusion. In the long term, the developed smartphone-based NIR imaging device with capabilities to capture physiological changes will be a great low-cost alternative for clinicians and eventually for patients with chronic ulcers and bed sores, and/or in pre-screening for potential ulcers in diabetic subjects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3