Power Take-Off and Energy Storage System Static Modeling and Sizing for Direct Drive Wave Energy Converter to Support Ocean Sensing Applications

Author:

Zhou Xiang,Abdelkhalik Ossama,Weaver WayneORCID

Abstract

This paper addresses the sizing and design problem of a permanent magnet electrical machine power take-off system for a two-body wave energy converter, which is designed to support ocean sensing applications with sustained power. The design is based upon ground truth ocean data bi-spectrums (swell and wind waves) from Martha’s Vineyard Coastal Observatory in the year 2015. According to the ground truth ocean data, the paper presents the optimal harvesting power time series of the whole year. The electrical machine and energy storage static modeling are introduced in the paper. The paper uses the ground truth ocean data in March to discuss the model integration of the buoy dynamic model, the power take-off model, and the energy storage model. Electrical machine operation constraints are applied to ensure the designed machine can fulfill the buoy control requirements. The electrical machine and energy storage systems operation status is presented as well. Furthermore, rule-based control strategies are applied to the electrical machine for fulfilling specific design demands, such as improving power generating efficiency and downsizing the electrical machine scale. The corresponding required capacities of the energy storage system are discussed. This paper relates results to the wave data sets (different combinations of significant wave heights and periods of both swell and wind waves). In this way, the power take-off system rule-based control strategy determinations can rely on current ocean wave measurements instead of a large historical ocean wave database.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3