Estimating the Annual Exceedance Probability of Water Levels and Wave Heights from High Resolution Coupled Wave-Circulation Models in Long Island Sound

Author:

Liu ChangORCID,Jia YanORCID,Onat YaprakORCID,Cifuentes-Lorenzen Alejandro,Ilia AminORCID,McCardell Grant,Fake Todd,O’Donnell James

Abstract

Accurately estimating the probability of storm surge occurrences is necessary for flood risk assessments. This research models Long Island Sound using a coupled coastal circulation and wave model (FVCOM-SWAVE) to hindcast the 44 highest storms between 1950–2018 and fitted Poisson-GPD distributions to modelled water levels and wave heights. Floodwater elevations and significant wave heights for 10% (1/10), 3% (1/30), 2% (1/50), and 1% (1/100) annual exceedance probabilities are provided for all Connecticut coastal towns. The results show that both water levels and their corresponding return intervals are higher along the western coast of Connecticut than the eastern coast, whereas significant wave heights increase eastward. Comparing our model results with those from the North Atlantic Coast Comprehensive Study (NACCS) shows that the mean NACCS results are higher for water levels and lower for significant wave heights for longer return periods. Likewise, the Federal Emergency Management Agency (FEMA) results in large errors compared to our results in both eastern and western coastal Connecticut regions. In addition to evaluating historical risks, we also added a sea-level height offset of 0.5 m for 2050 estimates in order to examine the effect of rising sea-levels on the analysis. We find that sea-level rise reduces the return period of a 10-year storm to two years. We advise periodically updating this work as improved sea-level rise projections become available.

Funder

U.S. Department of Housing and Urban Development

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3