Second Harmonic Modulation for Ultrasonic Signals Based on the Design of the Phononic Crystal Filter

Author:

Zhu Yue1,Zhao Youxuan2,Cao Peng3ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China

3. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

Nonlinear ultrasonic non-destructive testing (NDT) is a widely used method for detecting micro-damages in various materials and structures due to its high sensitivity and directional capability. However, the extraction and modulation of extremely weak nonlinear ultrasonic signals is quite a challenge in practical applications. Therefore, this paper focuses on the second harmonic modulation signal method in nonlinear ultrasonic NDT and proposes the design of the phononic crystal filter (PC filter) to achieve this filtering function. Through finite element simulations, it is demonstrated that the filtering frequency of the filter is influenced by the structural configuration, material wave speed, and geometric characteristics. Then, the design method for cubic PC filters is established. Furthermore, a time-domain finite element method is introduced to verify the filtering ability of the filter and further validate the rationality of this design approach.

Funder

Chinese National Natural Science Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3