Advanced Bimodal Skew-Symmetric Distributions: Methodology and Application to Cancer Cell Protein Data

Author:

Alomair Gadir1ORCID,Salinas Hugo S.2ORCID,Bakouch Hassan S.34ORCID,Okorie Idika E.5,Albalawi Olayan6ORCID

Affiliation:

1. Department of Quantitative Methods, School Business, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1531772, Chile

3. Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia

4. Department of Mathematics, Faculty of Science, Tanta University, Tanta 31111, Egypt

5. Department of Mathematics, Khalifa University, Abu Dhabi 127788, United Arab Emirates

6. Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia

Abstract

This paper explores bimodal skew-symmetric distributions, a versatile family of distributions characterized by parameters that control asymmetry and kurtosis. These distributions encapsulate both symmetrical and well-known asymmetrical behaviors. A simulation study evaluates the model’s estimation accuracy, detailing the score function and the robustness of the observed information matrix, which is proven to be non-singular under specific conditions. We apply the bimodal skew-normal model to protein data from cancer cells, comparing its performance against four established distributions supported on the entire real line. Results indicate superior performance by the proposed model, underscoring its potential for enhancing analytical precision in biological research.

Funder

King Faisal University, Saudi Arabia

Publisher

MDPI AG

Reference16 articles.

1. A class of distributions which includes the normal ones;Azzalini;Scand. J. Stat.,1985

2. Further results on a class of distributions which includes the normal ones;Azzalini;Statistica,1986

3. Some skew–symmetric models;Gupta;Random Oper. Stoch. Equ.,2002

4. Flexible class of the skew-symmetric distributions;Ma;Scand. J. Stat.,2004

5. A new class of skew-normal distributions;Quintana;Commun. Stat. Theory Methods,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3