A Similarity-Based Hierarchical Clustering Method for Manufacturing Process Models

Author:

Ahn HyunORCID,Chang Tai-WooORCID

Abstract

As the adoption of information technologies increases in the manufacturing industry, manufacturing companies should efficiently manage their data and manufacturing processes in order to enhance their manufacturing competency. Because smart factories acquire processing data from connected machines, the business process management (BPM) approach can enrich the capability of manufacturing operations management. Manufacturing companies could benefit from the well-defined methodologies and process-centric engineering practices of this BPM approach for optimizing their manufacturing processes. Based on the approach, this paper proposes a similarity-based hierarchical clustering method for manufacturing processes. To this end, first we describe process modeling based on the BPM-compliant standard so that the manufacturing processes can be controlled by BPM systems. Second, we present similarity measures for manufacturing process models that serve as a criterion for the hierarchical clustering. Then, we formulate the hierarchical clustering problem and describe an agglomerative clustering algorithm using the measured similarities. Our contribution is considered on the assumption that a manufacturing company adopts the BPM approach and it operates various manufacturing processes. We expect that our method enables manufacturing companies to design and manage a vast amount of manufacturing processes at a coarser level, and it also can be applied to various process (re)engineering problems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference27 articles.

1. An IoT data anomaly response model for smart factory performance measurement;Hwang;Int. J. Ind. Eng. Theory Appl. Pract.,2018

2. Hierarchical Clustering of Business Process Models;Jung;Int. J. Innov. Comput. Inf. Control,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3