Electrochemical Analysis of Free Glycerol in Biodiesel Using Reduced Graphene Oxide and Gold/Palladium Core-Shell Nanoparticles Modified Glassy Carbon Electrode

Author:

Paiva Victor MagnoORCID,Assis Kelly Leite dos Santos Castro,Archanjo Braulio SoaresORCID,Ferreira Daniela Ramos,Senna Carlos Alberto,Ribeiro Emerson SchwingelORCID,Achete Carlos Alberto,D'Elia Eliane

Abstract

Glycerol is a major byproduct obtained in the production of biodiesel, an important renewable fuel. The presence of free glycerol in fuel can have structural and performance consequences with respect to the engine, making fuel quality control important. The standard method to analyze glycerol in biodiesel is gas chromatography, a time-consuming and expensive technique. In this context, an electrode based on glassy carbon electrodes (GCEs) modified with reduced graphene oxide and core-shell gold@palladium nanoparticles was developed for the determination of glycerol in biodiesel. The free glycerol analysis was performed in the aqueous phase obtained by liquid–liquid extraction from a biodiesel sample. Cyclic voltammetry was chosen as the method for glycerol electrochemical analysis to regenerate active sites and promote greater sensor stability. The modified Au@Pd/rGO/GCE electrode showed an excellent performance, obtaining a linear range of 18.2 to 109 µmol L−1 with a correlation coefficient of 0.9895, limits of detection and quantification of 5.33 and 17.6 µmol L−1, respectively, high stability during 1000 cycles, and recovery values of 86% and 87% in the quantification of glycerol in biodiesel samples. The proposed method proved to be a great alternative for the analysis of glycerol in biodiesel, being a fast, sensitive, and low-cost technique due to its high stability and the use of small quantities of reagents.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3