Abstract
This study aims to identify the potential of gold mining waste for CO2 sequestration and its utilization for carbon storage in cementitious material. Samples of mine waste were identified from a gold mine for mineralogical and chemical composition analysis using X-ray diffractogram and scanning electron microscopy with energy-dispersive X-ray. Mine waste was utilized in a brick-making process as supplementary cementitious material and as an agent for CO2 capture and storage in bricks. Carbonation curing was incorporated in brick fabrication to estimate CO2 uptake of the brick product. Results indicated that the mine wastes were composed of silicate minerals essential for mineral carbonation such as muscovite and illite (major) and chlorite-serpentine, aerinite, albite and stilpnomelane (moderate/minor phases). The mine wastes were identified as belonging to the highly pozzolanic category, which has a great role in improving the strength properties of brick products. Carbonated minerals served as an additional binder that increased the strength of the product. CO2 uptake of the product was between 0.24% and 0.57% for bricks containing 40–60% of gold mine waste, corresponding to 7.2–17.1 g CO2/brick. Greater performance in terms of compressive strength and water adsorption was observed for bricks with 3 h carbonation curing. The carbonation product was evidenced by strong peaks of calcite and reduced peaks for calcium hydroxide from XRD analysis and was supported by a densified and crystalline microstructure of materials. It has been demonstrated that gold mine waste is a potential feedstock for mineral carbonation, and its utilization for permanent carbon storage in brick making is in line with the concept of CCUS for environmental sustainability.
Funder
Ministry of Higher Education, Malaysia
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference85 articles.
1. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities
2. World Energy Outlook,2019
3. CO2 Capture in the Cement Industry,2008
4. Global Warming of 1.5 C: An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018
5. Mechanisms for Geological Carbon Sequestration
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献