Low-Harmonic DC Ice-Melting Device Capable of Simultaneous Reactive Power Compensation

Author:

Lu Jiazheng,Zhu Siguo,Li Bo,Tan Yanjun,Zhou Xiudong,Huang Qinjun,Zhu Yuan,Mao Xinguo

Abstract

As a result of the high efficiency of ice-melting and the small power supply capacity, DC ice-melting devices are widely used in relation to transmission lines in the power grid. However, it needs to consume reactive power when ice-melting, and voltage fluctuation of the substation may be caused when the demand for reactive power is large. It also generates a large number of 5th and 7th harmonics when ice-melting. In this paper, combined with the demand for ice-melting for transmission lines and the dynamic reactive power of substations, a low-harmonic DC ice-melting device capable of simultaneous reactive power compensation is studied. The function of ice-melting and reactive power compensation can be operated simultaneously and the rectifier’s main harmonics can be eliminated. The simulation and experimental research on the device was carried out in the 500 kV Chuanshan substation. The actual ice melting was carried out on the 500 kV Chuansu I line and took only 68 min to melt the ice. The 500 kV bus voltage had no negative deviation, and the positive deviation decreased from +3.09% to +1.57% within 24 h of testing. The results prove the feasibility of the proposed DC ice-melting device in this paper.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Analysis of Ice-Covering Characteristics of China Hunan Power Grid

2. Influence of STATCOM System on the DC-icing Rectifier Transformers’ DC Magnetization and Suppression Method;Lu;High Volt. Eng.,2016

3. Analysis of the causes of tower collapses in Hunan during the 2008 ice storm;Long;High Volt. Eng.,2008

4. Temperature characteristic of DC ice-melting conductor

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3