Author:
Wang Pengyu,Wang Zhiliang,Shen Linfang,Xin Libin
Abstract
Slip boundary has an important influence on fluid flow, which is non-negligible in rock micro-fractures. In this paper, an improved pseudo-potential multi-relaxation-time (MRT) lattice Boltzmann method (LBM), which can achieve a large density ratio, is introduced to simulate the fluid flow in a micro-fracture. The model is tested to satisfy thermodynamic consistency and simulate Poiseuille flow in the case of large liquid-gas density ratio. The slip length is used as an index for evaluating the flow characteristics, and the effects of wall wettability, micro-fracture width, driving pressure and liquid-gas density ratio on the slip length are discussed. The results demonstrate that the slip length increases significantly with the increase of the wall contact angle in rock micro-fracture. And the liquid-gas density ratio has an important impact on the slip length, especially for the hydrophobic wall. Moreover, under the laminar flow regime the driving pressure and the micro-fracture width has little effect on the slip length.
Funder
National Natural Science Foundation of China
Yunnan Applied Basic Research Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献