Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems

Author:

Li ShunORCID,Zhou Xinxiu

Abstract

A large number of permanent magnet synchronous motors (PMSMs) are used to drive coal conveyer belts in coal enterprises. Sensorless energy conservation control has important economic value for these enterprises. The key problem of sensorless energy conservation control for PMSMs is how to decompose the stator current through estimating the rotor position and speed accurately. Then a double closed loop control for stator current and speed is formed to make the stator current drive the motor as an entire torque current. In this paper, the proposed startup estimation algorithm can utilize the current model of PMSM as reference model to estimate the rotor speed and position in the startup stages. It is not dependent on the back electromotive force (EMF) which is used by the general estimation algorithm. However, the resistance will change with the temperature shift of stator windings, and these changes will cause the reference current model to be inaccurate and influence the rotor speed and position estimation precision. Thus, startup estimation algorithm switches to the proposed operation estimation algorithm which is based on the robust sliding mode theory and is not dependent on the motor parameters. The advantages of startup estimation algorithm and operation estimation algorithm are combined to form a hybrid observer. This hybrid observer realizes the accurate estimation of the rotor speed and position from start-up to operation. The stator current is precisely decomposed. The excitation current is controlled to 0. Meanwhile, the double closed-loop control of current and speed is achieved. The stator current is as entire torque current to drive motor. The closed-loop control, which is based on the proposed rotor position and speed estimation algorithm, achieve the most efficient conversion of electrical energy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3