Abstract
This paper describes a novel observation on partial discharges (PDs), which occur despite the absence of an applied voltage, within a chopped sequence. It was found that additional discharge pulses occur when a specimen is subjected to chopped sequences rather than a continuous sinusoid. The discharge pulses, called Partial Discharge Echoes (PDE), appeared in time intervals (where no voltage was being applied), immediately after the specimen had been exposed to a base waveform (e.g., sinusoidal) above a partial discharge inception level. The chopped timing is composed of a multiple series of packets consisting of base waveforms, with each packet being separated in time by a defined delay period. The presented experiments were performed on specimens with an embedded gaseous void, in thermosetting insulation and glass as a non-polar material, for comparison. Acquisition of the echo signal was performed in the phase-resolved mode, modifying the synchronization path and the settings. In contrast to continuous sinusoidal PD measurements, the chopped approach might provide a deeper insight into key PD phenomena, such as inception, propagation, time lag, post-discharge time decay, and effective surface area. Special focus was paid to the transition point between sinusoidal phase and the echo interval. The various scenarios of an echo mechanism, depending on the coincidence of remnant polarization field and the field accumulated on void walls, are discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献