Optimization of the Electric Field Distribution at the End of the Stator in a Large Generator

Author:

Hu Haitao,Zhang Xiaohong,Liu Yanli,Guo Lijun,Gao JunguoORCID

Abstract

The electric field distribution at the end of a large hydro-generator is highly nonuniform and prone to corona discharge, which damages the main insulation and significantly reduces the service life of the hydro-generator. In order to reduce the thickness of the main insulation and the physical size of a large hydro-generator, it is necessary to understand the distribution of the electric field at the end of its stator bar. In this paper, the stator bar at the end of a large generator is simulated using the finite element method to determine the distribution of the potential, electric field, and loss at the rated voltage, as well as to elucidate the differences between the linear corona protection, two-segment nonlinear corona protection, and three-segment nonlinear corona protection structures. The influences of the arc angle, length of each corona protection layer, intrinsic resistivity of the corona protection material, and nonlinear coefficient are also analyzed. The results manifest that the angle of the stator bar should be 22.5°, the difference in resistivity between the two adjacent corona protection coatings should not exceed two orders of magnitude, and the resistivity of the medium resistivity layer should be nearly 106 Ω·m or 107 Ω·m, for an optimal design of the corona protection structure.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3