Author:
Krishnan Yogeshwaran,Byrne Aaron,English Niall
Abstract
The accurate ab-initio modelling of prototypical and well-representative photo-active interfaces for candidate dye-sensitised solar cells is a challenging problem. To this end, using ab-initio molecular-dynamics (AIMD) simulation based on Density Functional Theory (DFT), the effects of explicit solvation by iodide-based, I−[bmim]+ room-temperature ionic liquids (RTILs) have been assessed on modelling a N719-chromophore sensitising dye adsorbed onto an anatase-titania (101) surface. In particular, the vibrational spectra for this model photo-active interface were calculated by means of Fourier transformed mass-weighted velocity autocorrelation functions. These were compared with experiment and against each other to gain an understanding of how using iodine-based RTILs as the electrolytic hole acceptor alters the dynamical properties of the widely-used N719 dye. The effect of Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) functionals on the vibrational spectra were assessed. PBE generally performed best in producing spectra which matched the typically expected experimental frequency modes.
Funder
Science Foundation Ireland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献