Effect of the Particle Size of Iron Ore on the Pyrolysis Kinetic Behaviour of Coal-Iron Ore Briquettes

Author:

Zheng Heng,Wang Wei,Xu Runsheng,Zan Rian,Schenk Johannes,Xue Zhengliang

Abstract

High reactivity coke is beneficial for achieving low carbon emission blast furnace ironmaking. Therefore, the preparation of highly reactive ferro-coke has aroused widespread attention. However, the effects of the particle size of iron ore on the pyrolysis behaviour of a coal-iron ore briquette are still unclear. In this study, the effect of three particle sizes (0.50–1.00 mm, 0.25–0.50 mm and <0.74 mm) of iron ore on the thermal and kinetic behaviours of coal-iron ore briquettes were investigated by non-isothermal kinetic analysis. The results showed that the synergistic effect of iron ore and coal during coking mainly occurred during the later reaction stage (850–1100 °C) and smaller particle sizes of iron ore have a stronger synergistic effect. The addition of iron ore had little effect on T0 (the initial temperature) and Tp (the temperature at the maximum conversion rate) of briquette pyrolysis, however itgreatly affected the conversion rate and Tf (the final temperature) of the briquettes. T0 decreased with the decrease of iron ore particle sizes, while Tp and Tf showed opposite trends. After adding iron ore into the coal briquette, the reaction kinetics at all stages of the coal-iron ore briquettes changed. The weighted apparent activation energy of the caking coal (JM) briquette was 35.532 kJ/mol, which is lower than that of the coal-iron ore briquettes (38.703–55.627 kJ/mol). In addition, the weighted apparent activation energy gradually increased with decreasing iron ore particle sizes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3