Preparation and Properties of a Composite Carbon Foam, as Energy Storage and EMI Shield Additive, for Advanced Cement or Gypsum Boards

Author:

Gioti Christina1,Vasilopoulos Konstantinos C.12ORCID,Baikousi Maria1ORCID,Ntaflos Angelos1ORCID,Viskadourakis Zacharias2ORCID,Paipetis Alkiviadis S.1ORCID,Salmas Constantinos E.1ORCID,Kenanakis George2ORCID,Karakassides Michael A.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina, Greece

2. Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion-Crete, Greece

Abstract

This article explores the cutting-edge advancement of gypsum or cement building boards infused with shape-stabilized n-octadecane, an organic phase change material (PCM). The primary focus is on improving energy efficiency and providing electromagnetic interference (EMI) shielding capabilities for contemporary buildings. This research investigates the integration of these materials into construction materials, using red-mud carbon foam (CCF) as a stabilizer for n-octadecane (OD@CCF). Various analyses, including microstructural examination, porosity, and additive dispersion assessment, were conducted using X-ray microtomography and density measurements. Thermal conductivity measurements demonstrated the enhancement of composite boards as the OD@CCF content increased, while mechanical tests indicated an optimal additive content of up to 20%. The thermally regulated capabilities of these advanced panels were evaluated in a custom-designed room model, equipped with a homemade environmental chamber, ensuring a consistent temperature environment during heating and cooling cycles. The incorporation of OD@CCF into cement boards exhibited improved thermal energy storage properties. Moreover, the examined composite boards displayed efficient electromagnetic shielding performance within the frequency range of 3.2–7.0 GHz, achieving EMI values of approximately 18 and 19.5 dB for gypsum and cement boards, respectively, meeting the minimum value necessary for industrial applications.

Funder

European Union NextGenerationEU

European Union and Greek national funds

HORIZON-IA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3