Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland

Author:

O’Keeffe JoannaORCID,Marcinkowski PawełORCID,Utratna Marta,Piniewski MikołajORCID,Kardel IgnacyORCID,Kundzewicz Zbigniew,Okruszko Tomasz

Abstract

Climate change is expected to affect the water cycle through changes in precipitation, river streamflow, and soil moisture dynamics, and therefore, present a threat to groundwater and surface water-fed wetland habitats and their biodiversity. This article examines the past trends and future impacts of climate change on riparian, water-dependent habitats within the special areas of conservation (SAC) of the Natura 2000 network located within Odra and Vistula River basins in Poland. Hydrological modelling using the Soil and Water Assessment Tool (SWAT) was driven by a set of nine EURO-CORDEX regional climate models under two greenhouse gas concentration trajectories. Changes in the duration of flooding and inundation events were used to assess climate change’s impact on surface water-fed wetland habitats. The groundwater-fed wetlands were evaluated on the basis of changes in soil water content. Information about the current conservation status, threats, and pressures that affect the habitats suggest that the wetlands might dry out. Increased precipitation projected for the future causing increased water supply to both surface water and groundwater-fed wetlands would lead to beneficial outcomes for habitats with good, average, or reduced conservation status. However, habitats with an excellent conservation status that are already in optimum condition could be negatively affected by climate change as increased soil water or duration of overbank flow would exceed their tolerance.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3