High Precision Visual Dimension Measurement Method with Large Range Based on Multi-Prism and M-Array Coding

Author:

Zhou XiaoORCID,Zhou CongORCID,Zhang Tingting,Mou Xingang,Xu Jiaxin,He Yi

Abstract

The visual dimension measurement method based on non-splicing single lens has the contradiction between accuracy and range of measurement, which cannot be considered simultaneously. In this paper, a multi-camera cooperative measurement method without mechanical motion is proposed for the dimension measurement of thin slice workpiece. After the calibration of the multi-camera imaging system is achieved through a simple and efficient scheme, the high-precision dimension measurement with a large field of view can be completed through a single exposure. First, the images of the edges of the workpiece are compressed and combined by splitting and merging light through the multi-prism system, and the results are distributed to multiple cameras by changing the light path. Then, the mapping relationship between the global measurement coordinates and the image coordinates of each camera is established based on the globally unique M-array coding, and the image distortion is corrected by the coding unit composed of black and white blocks. Finally, the edge is located accurately by edge point detection at the sub-pixel level and curve fitting. The results of measuring a test workpiece with the dimension of 24 mm × 12 mm × 2 mm through a single exposure show that the repeated measurement accuracy can reach 0.2 µm and the absolute accuracy can reach 0.5 µm. Compared with other methods, our method can achieve the large-field measurement through only one exposure and without the mechanical movement of cameras. The measurement precision is higher and the speed is faster.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3