Delineation of Nitrate Reduction Hotspots in Artificially Drained Areas through Assessment of Small-Scale Spatial Variability of Electrical Conductivity Data

Author:

Senal Maria Isabel,Møller Anders Bjørn,Koganti TrivenORCID,Iversen Bo V.ORCID

Abstract

Identification of nitrate reduction hotspots (NRH) can be instrumental in implementing targeted strategies for reducing nitrate loading from agriculture. In this study, we aimed to delineate possible NRH areas from soil depths of 80 to 180 cm in an artificially drained catchment by utilizing electrical conductivity (EC) values derived by the inversion of apparent electrical conductivity data measured by an electromagnetic induction instrument. The NRH areas were derived from the subzones generated from clustering the EC values via two methods, unsupervised ISODATA clustering and the Optimized Hot Spot Analysis, that highly complement each other. The clustering of EC values generated three classes, wherein the classes with high EC values correspond to NRH areas as indicated by their low redox potential values and nitrate (NO3−) concentrations. Nitrate concentrations in the NRH were equal to 13 to 17% of the concentrations in non-NRH areas and occupied 26% of the total area of the drainage catchments in the study. It is likely that, with the identification of NRH areas, the degree of nitrogen reduction in the vadose zone may be higher than initially estimated at the subcatchment scale.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference89 articles.

1. 30 Years of Nutrient Management Learnings from Denmark: A Succesful Turnaround and Novel Ideas for the next Generation;Kronvang,2017

2. Possibilities for Reducing Nitrate Leaching from Agricultural Land

3. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

4. Overview of the Danish Regulation of Nutrients in Agriculture & the Danish Nitrates Action Programme,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3