Endocytosis and Lack of Cytotoxicity of Alkyl-Capped Silicon Quantum Dots Prepared from Porous Silicon

Author:

Phatvej Wipaporn,Datta Harish K.,Wilkinson Simon C.,Mutch Elaine,Daly Ann K.ORCID,Horrocks Benjamin R.ORCID

Abstract

Freely-dissolved silicon quantum dots were prepared by thermal hydrosilation of 1-undecene at high-porosity porous silicon under reflux in toluene. This reaction produces a suspension of alkyl-capped silicon quantum dots (alkyl SiQDs) with bright orange luminescence, a core Si nanocrystal diameter of about 2.5 nm and a total particle diameter of about 5 nm. Previous work has shown that these particles are rapidly endocytosed by malignant cell lines and have little or no acute toxicity as judged by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for viability and the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis. We have extended this work to the CACO-2 cell line, an established model for the human small intestinal mucosa, and demonstrate that neither acute nor chronic (14 days) toxicity is observed as judged by cell morphology, viability, ATP production, ROS production and DNA damage (single cell gel electrophoresis) at doses of 50–200 μ g mL − 1 . Quantitative assessment of the extent of uptake of alkyl SiQDs by CACO-2, HeLa, HepG2, and Huh7 cell lines by flow cytometry showed a wide variation. The liver cell lines (HepG2 and Huh7) were the most active and HeLa and CACO-2 showed comparable activity. Previous work has reported a cholesterol-sensitivity of the endocytosis (HeLa), which suggests a caveolin-mediated pathway. However, gene expression analysis by quantitative real–time polymerase chain reaction (RT-PCR) indicates very low levels of caveolins 1 and 2 in HepG2 and much higher levels in HeLa. The data suggest that the mechanism of endocytosis of the alkyl SiQDs is cell-line dependent.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3