Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels

Author:

Chen Zhao-YueORCID,Jin Jie-Qi,Zhang Rong,Zhang Tian-Hao,Chen Jin-Jian,Yang JunORCID,Ou Chun-QuanORCID,Guo Yuming

Abstract

The immense problem of missing satellite aerosol retrievals (Aerosol Optical Depth, (AOD)) detrimentally affects the prediction ability of ground-level PM2.5 concentrations and may lead to unavoidable biases. An appropriate missing-imputation method has not been well developed to date. This study developed a two-stage approach (AOD-imputation stage and PM2.5-prediction stage) to predict short-term PM2.5 exposure in mainland China from 2013–2018. At the AOD-imputation stage, geostatistical methods and machine learning (ML) algorithms were examined to interpolate 1 km satellite aerosol retrievals. At the PM2.5-prediction stage, the daily levels of PM2.5 were predicted at a resolution of 1 km, based on interpolated AOD and meteorological data. The statistical performances of the different interpolation methods were comprehensively compared at each stage. The original coverage of retrieved AOD was 15.46% on average. For the AOD-imputation stage, ML methods produced a higher coverage (98.64%) of AOD than geostatistical methods (21.43–87.31%). Among ML algorithms, random forest (RF) or extreme gradient boosted (XG-interpolated) AOD produced better interpolated quality (CV R2 = 0.89 and 0.85) than other algorithms (0.49–0.78), but XGBoost required only 15% of the computing time of RF. For the PM2.5 predicted stage, neither RF-AOD nor XG-AOD could guarantee higher accuracy in PM2.5 estimations (CV R2 = 0.88 (RF or XG-AOD) compared to 0.85 (original)), or more stable spatial and temporal extrapolation (spatial, (temporal) CV R2 = 0.83 (0.83), 0.82 (0.82), and 0.65 (0.61) for RF, XG, and original). For the AOD-imputation stage, the missing-filled efficiency depended more on external information, while the missing-filled accuracy relied more on model structure. For the PM2.5 predicted stage, efficient AOD interpolation (or the ability to eliminate the missing data) was a precondition for the stable spatial and temporal extrapolation, while the quality of interpolated AOD showed less significant improvements. It was found that XG-AOD is a better choice to estimate daily PM2.5 exposure in health assessments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3