In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions

Author:

Li Shanlan,Kim Youngmi,Kim Jinwon,Kenea Samuel Takele,Goo Tae-Young,Labzovskii Lev D.,Byun Young-Hwa

Abstract

A cavity ring-down spectroscopy (CRDS) G-2401m analyzer onboard a Beechcraft King Air 350, a new Korean Meteorological Administration (KMA) research aircraft measurement platform since 2018, has been used to measure in situ CO2, CH4, and CO. We analyzed the aircraft measurements obtained in two campaigns: a within-boundary layer survey over the western Republic of Korea (hereafter Korea) for analyzing the CO2 and CH4 emission characteristics for each season (the climate change monitoring (CM) CM mission), and a low altitude survey over the Yellow Sea for monitoring the pollutant plumes transported into Korea from China (the environment monitoring (EM) mission). This study analyzed CO2, CH4, and CO data from a total of 14 flights during 2019 season. To characterize the regional combustion sources signatures of CO2 and CH4, we calculated the short-term (1-min slope based on one second data) regression slope of CO to CO2 and CH4 to CO enhancements (subtracted with background level, present as ∆CO, ∆CO2, and ∆CH4); slope filtered with correlation coefficients (R2) (<0.4 were ignored). These short-term slope analyses seem to be sensitive to aircraft measurements in which the instrument samples short-time varying mixtures of different air masses. The EM missions all of which were affected by pollutants emitted in China, show the regression slope between ∆CO and ∆CO2 with of 1.8–6% and 0.3–0.7 between ∆CH4 and ∆CO. In particular, the regression slope between ∆CO and ∆CO2 increased to >4% when air flows from east-central China such as Hebei, Shandong, and Jiangsu provinces, etc., sustained for 1–3 days, suggesting pollutants from these regions were most likely characterized by incomplete fossil fuel combustions at the industries. Over 80% of the observations in the Western Korea missions were attributed to Korean emission sources with regression slope between ∆CO and ∆CO2 of 0.5–1.9%. The CO2 emissions hotspots were mainly located in the north-Western Korea of high population density and industrial activities. The higher CH4 were observed during summer season with the increasing concentration of approximately 6% over the background level, it seems to be attributed to biogenic sources such as rice paddies, landfill, livestock, and so on. It is also noted that occurrences of high pollution episodes in North-Western Korea are more closely related to the emissions in China than in Korea.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3