Development and Application of HECORA Cloud Retrieval Algorithm Based On the O2-O2 477 nm Absorption Band

Author:

Wang Shuntian,Liu Cheng,Zhang Wenqiang,Hao Nan,Gimeno García Sebastián,Xing Chengzhi,Zhang ChengxinORCID,Su Wenjing,Liu JianguoORCID

Abstract

In this paper, we present the Hefei EMI Cloud Retrieval Algorithm (HECORA), which uses information from the O2-O2 absorption band around 477 nm to retrieve effective cloud fraction and effective cloud pressure from satellite observations. The retrieved cloud information intends to improve the atmospheric trace gas products based on the Environment Monitoring Instrument (EMI) spectrometer. The HECORA method builds on OMCLDO2 and presents some evolutions. The Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model has been used to produce the Top of the Atmosphere (TOA) reflectance Look-up Tables (LUT) as a function of the cloud fraction and cloud pressure. Applying the Differential Optical Absorption Spectroscopy (DOAS) technique to the synthetic reflectance LUT, the reflectance spectra can be associated with O2-O2 geometrical vertical column densities (VCDgeo) and continuum reflectance. This is the core of the retrieval method, since there is a one-to-one relationship between O2-O2 VCDgeo and continuum reflectance, on the one hand, and effective cloud fraction and effective cloud pressure, on the other hand, for a given illumination and observing geometry and given surface height and surface albedo. We first used the VLIDORT synthetic spectra to verify the HECORA algorithm and obtained good results in both the Lambertian cloud model and the scattering cloud model. Secondly, HECORA is applied to OMI and TROPOMI and compared with OMCLDO2, FRESCO+, and OCRA/ROCINN cloud products. Later, the cloud pressure results from TROPOMI observations obtained using HECORA and FRESCO+ are compared with the CALIOP Cloud Layer product. HECORA is closer to the CALIOP results under low cloud conditions, while FRESCO+ is closer to high clouds due to the higher sensitivity of the O2 A-band to cloud vertical information. Finally, HECORA is applied to the TROPOMI NO2 retrieval. Validation of the tropospheric NO2 VCD with ground-based MAX-DOAS measurements shows that choosing HECORA cloud products to correct for photon path variations on the TROPOMI tropospheric NO2 VCD retrievals has better performance than using FRESCO+ under low cloud conditions. In conclusion, this paper shows that the HECORA cloud products are in good agreement with the well-established cloud products and that they are suitable for correcting the effect of cloud in trace gas retrievals. Therefore, HECORA has the potential to be applied to EMI.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3