Screening and Evaluation of Stable Reference Genes for Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis in Chinese Fir Roots under Water, Phosphorus, and Nitrogen Stresses

Author:

Chen Ranhong,Chen Wanting,Tigabu MulualemORCID,Zhong Weimin,Li Yushan,Ma Xiangqing,Li Ming

Abstract

Chinese fir (Cunninghamia lanceolata) is an economical important timber species widely planted in southeastern Asia. Decline in yield and productivity during successive rotation is believed to be linked with abiotic stress, such as drought stress and nitrogen (N) and phosphorus (P) starvation. Molecular breeding could be an option to develop tolerant genotypes. For gene expression studies using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), stable reference genes are needed for normalization of gene expression under different experimental conditions. However, there is no internal reference genes identified for Chinese fir under abiotic stresses. Thus, nine internal reference genes based on transcriptome data were selected and analyzed in the root of Chinese fir under drought stress and N and P starvation. Data were analyzed using geNorm, NormFinder, and BestKeeper, to screen and identify the best reference genes. The results showed that the UBQ and GAPDH genes were the two most stable genes under drought stress and the Actin1 and GAPDH were the two most stable genes under P starvation. Further, it was discovered that the Actin1 and UBC were the two most stable genes under N starvation among nine candidate reference genes. The gene expression of drought stress induced expression protein 14-3-3-4, the P transporter gene ClPht1;3, and the nitrate transporter gene NRT1.1 were used to verify the stability of the selected reference genes under drought stress and P and N starvation, respectively, and the results revealed that the screened reference genes were sufficient to normalize expression of the target genes. In conclusion, the results demonstrate that the stability of reference genes was closely related to the external conditions and reference genes applied to the roots of Chinese fir under different abiotic stress treatments were different. Our data will facilitate further studies on stress ecology and gene function analysis in Chinese fir.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3