Tree-Rings Reveal Accelerated Yellow-Cedar Decline with Changes to Winter Climate after 1980

Author:

Comeau Vanessa M.,Daniels Lori D.,Knochenmus Garrett,Chavardès Raphaël D.,Zeglen Stefan

Abstract

Research Highlights: Yellow-cedar decline on the island archipelago of Haida Gwaii is driven by warm winter temperatures and low winter precipitation, which is caused by anthropogenic climate change and exacerbated by the positive phase of the Pacific Decadal Oscillation (PDO). Background and Objectives: Declining yellow-cedars are limited by physiological drought during the growing season, caused by freezing damage to fine roots through a complex pathway identified by research in Alaska. Given this, we hypothesized: (1) yellow-cedars on Haida Gwaii were limited by the winter climate. (2) Trees of different health classes were responding differently to climatic variation. (3) Changing climate-growth relations would vary among phases of the PDO. Materials and Methods: We sampled 15 stands exhibiting crown symptoms and developed three regional chronologies from trees that were healthy, had crown or tree-ring symptoms of decline, and trees that had died. We tested for growth responses to inter-annual and multi-decadal variation in climate among trees of different health statuses using correlation functions and wavelet analyses. Results: The three chronologies had similar patterns from the early 1500s to 1900s and responded to climate in the same way, with multi-decadal variability, and common narrow marker years. Climate-growth responses among trees of different health statuses diverged after the 1976/1977 switch in the PDO. Warm growing season temperatures facilitated the growth of trees in the healthy chronology. By contrast, growth of trees that showed symptoms of decline or had died was negatively associated with low winter precipitation. After 1986, growth of trees in the declining chronology decreased sharply and mortality increased, which is concurrent with the warmest winter temperatures and consistent with the root-freezing hypothesis from Alaska. Conclusions: Yellow-cedar decline is driven by climate change, exacerbated by the PDO. Warming winter temperatures, accelerated by anthropogenic climate change, have led to dieback and death of yellow-cedars, even with the temperate ocean-moderated climate of Haida Gwaii.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3