In Silico Structural and Biochemical Functional Analysis of a Novel CYP21A2 Pathogenic Variant

Author:

Cohen Michal,Pignatti EmanueleORCID,Dines Monica,Mory Adi,Ekhilevitch NinaORCID,Kolodny RachelORCID,Flück Christa E.,Tiosano Dov

Abstract

Classical congenital adrenal hyperplasia (CAH) caused by pathogenic variants in the steroid 21-hydroxylase gene (CYP21A2) is a severe life-threatening condition. We present a detailed investigation of the molecular and functional characteristics of a novel pathogenic variant in this gene. The patient, 46 XX newborn, was diagnosed with classical salt wasting CAH in the neonatal period after initially presenting with ambiguous genitalia. Multiplex ligation-dependent probe analysis demonstrated a full deletion of the paternal CYP21A2 gene, and Sanger sequencing revealed a novel de novo CYP21A2 variant c.694–696del (E232del) in the other allele. This variant resulted in the deletion of a non-conserved single amino acid, and its functional relevance was initially undetermined. We used both in silico and in vitro methods to determine the mechanistic significance of this mutation. Computational analysis relied on the solved structure of the protein (Protein-data-bank ID 4Y8W), structure prediction of the mutated protein, evolutionary analysis, and manual inspection. We predicted impaired stability and functionality of the protein due to a rotatory disposition of amino acids in positions downstream of the deletion. In vitro biochemical evaluation of enzymatic activity supported these predictions, demonstrating reduced protein levels to 22% compared to the wild-type form and decreased hydroxylase activity to 1–4%. This case demonstrates the potential of combining in-silico analysis based on evolutionary information and structure prediction with biochemical studies. This approach can be used to investigate other genetic variants to understand their potential effects.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3