Suppression of SHROOM1 Improves In Vitro and In Vivo Gene Integration by Promoting Homology-Directed Repair

Author:

Zhao ZhihuaORCID,Zhang Hanshuo,Xiong Tuanlin,Wang Junyi,Yang Di,Zhu Dan,Li Juan,Yang Ye,Sun Changhong,Zhao Yuting,Xi Jianzhong Jeff

Abstract

Homologous recombination (HR) is often used to achieve targeted gene integration because of its higher precision and operability compared with microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). It appears to be inefficient for gene integration in animal cells and embryos due to occurring only during cell division. Here we developed genome-wide high-throughput screening and a subsequently paired crRNA library screening to search for genes suppressing homology-directed repair (HDR). We found that, in the reporter system, HDR cells with knockdown of SHROOM1 were enriched as much as 4.7-fold than those with control. Down regulating SHROOM1 significantly promoted gene integration in human and mouse cells after cleavage by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9), regardless of the donor types. The knock-in efficiency of mouse embryos could also be doubled by the application of SHROOM1 siRNA during micro-injection. The increased HDR efficiency of SHROOM1 deletion in HEK293T cells could be counteracted by YU238259, an HDR inhibitor, but not by an NHEJ inhibitor. These results indicated that SHROOM1 was an HDR-suppressed gene and that the SHROOM1 knockdown strategy may be useful for a variety of applications, including gene editing to generate cell lines and animal models for studying gene function and human diseases.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3