Effects of Aerobic Exercise on Tau and Related Proteins in Rats with the Middle Cerebral Artery Occlusion

Author:

Mankhong Sakulrat,Kim SujinORCID,Moon Sohee,Lee Kyoung-Hee,Jeon Hyeong-Eun,Hwang Byeong-Hun,Beak Jong-Won,Joa Kyung-Lim,Kang Ju-HeeORCID

Abstract

Although Alzheimer’s disease (AD)-like pathology is frequently found in patients with post-stroke dementia, little is known about the effects of aerobic exercise on the modifications of tau and related proteins. Therefore, we evaluated the effects of aerobic exercise on the phosphorylation and acetylation of tau and the expressions of tau-related proteins, after middle cerebral artery occlusion (MCAO) stroke. Twenty-four Sprague–Dawley rats with MCAO infarction were used in this study. The rehabilitation group (RG) received treadmill training 40 min/day for 12 weeks, whereas the sedentary group (SG) did not receive any type of training. Functional tests, such as the single pellet reaching task, rotarod, and radial arm maze tests, were performed monthly for 3 months. In ipsilateral cortices in the RG and SG groups, level of Ac-tau was lower in the RG, whereas levels of p-tauS396, p-tauS262, and p-tauS202/T205 were not significantly lower in the RG. Level of phosphorylated glycogen synthase kinase 3-beta Tyr 216 (p-GSK3βY216) was lower in the RG, but levels of p-AMPK and phosphorylated glycogen synthase kinase 3-beta Ser 9 (p-GSK3βS9) were not significantly lower. Levels of COX-2 and BDNF were not significantly different between the two groups, while SIRT1 significantly decreased in ipsilateral cortices in RG. In addition, aerobic training also improved motor, balance, and memory functions. Rehabilitation with aerobic exercise inhibited tau modification, especially tau acetylation, following infarction in the rat MCAO model, which was accompanied with the improvement of motor and cognitive functions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3