2D and 3D Triangulation Are Suitable In Situ Measurement Tools for High-Power Large Spot Laser Penetration Processes to Visualize Depressions and Protrusions before Perforating

Author:

Reich StefanORCID,Göbel Alexander,Goesmann Marcel,Heunoske Dominic,Schäffer SebastianORCID,Lueck MartinORCID,Wickert Matthias,Osterholz JensORCID

Abstract

During laser penetration, the irradiated samples form a melt pool before perforation. Knowledge of the dynamics of this melt pool is of interest for the correct physical description of the process and leads to improved simulations. However, a direct investigation, especially at the location of high-power laser interaction with large spot diameters in the centimeter range is missing until now. Here, the applicability of 2D triangulation for surface topology observations is demonstrated. With the designed bidirectional 2D triangulation setup, the material cross-section is measured by profile detection at the front and back side. This allows a comprehensive description of the penetration process to be established, which is important for a detailed explanation of the process. Specific steps such as surface melting, indentations, protrusions during melt pool development and their dynamics, and the perforation are visualized, which were unknown until now. Furthermore, a scanning 3D triangulation setup is developed to obtain more information about the entire melt pool at the front side, and not just a single intersection line. The measurements exhibit a mirror-symmetric melt pool and the possibility to extrapolate from the central profile to the outer regions in most cases.

Funder

Federal Office of Bundeswehr Equipment, Information Technology and In-Service Support

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3