Author:
Chen Xing,Zhao Cuihua,Wu Hao,Shi Yong,Chen Cuiting,Zhou Xi
Abstract
Direct Z-scheme photocatalysts have attracted extensive attention due to their strong redox ability and efficient separation of photogenerated electron-hole pairs. In this study, we constructed two types of ZnS/SnS2 heterojunctions with different stacking models of ZnS and SnS2 layers, and investigated their structures, stabilities, and electronic and optical properties. Both types of heterojunctions are stable and are direct Z-scheme photocatalysts with band gaps of 1.87 eV and 1.79 eV, respectively. Furthermore, their oxidation and reduction potentials straddle the redox potentials of water, which makes them suitable as photocatalysts for water splitting. The built-in electric field at the heterojunction interface improves the separation of photogenerated electron-hole pairs, thus enhancing their photocatalytic efficiency. In addition, ZnS/SnS2 heterojunctions have higher carrier mobilities and light absorption intensities than ZnS and SnS2 monolayers. Therefore, the ZnS/SnS2 heterojunction has a broad application prospect as a direct Z-scheme visible-light-driven photocatalyst for overall water splitting.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献