Can Finite Element Method Obtain SVET Current Densities Closer to True Localized Corrosion Rates?

Author:

Saeedikhani Mohsen,Vafakhah Sareh,Blackwood Daniel J.ORCID

Abstract

In this paper, the finite element method was used to simulate the response of the scanning vibrating electrode technique (SVET) across an iron–zinc cut-edge sample in order to provide a deeper understanding of the localized corrosion rates measured using SVET. It was found that, if the diffusion layer was neglected, the simulated current density using the Laplace equation fitted the experimental SVET current density perfectly. However, the electrolyte was not perturbed by a vibrating SVET probe in the field, so a diffusion layer existed. Therefore, the SVET current densities obtained from the local conductivity of the electrolyte would likely be more representative of the true corrosion rates than the SVET current densities obtained from the bulk conductivity. To help overcome this difference between natural conditions and those imposed by the SVET experiment, a local electrolyte corrected conductivity SVET (LECC-SVET) current density was introduced, which was obtained by replacing the bulk electrolyte conductivity measured experimentally by the local electrolyte conductivity simulated using the Nernst−Einstein equation. Although the LECC-SVET current density did not fit the experimental SVET current density as perfectly as that obtained from the Laplace equation, it likely represents current densities closer to the true, unperturbed corrosion conditions than the SVET data from the bulk conductivity.

Funder

Prime Minister's Office

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localising the electrochemistry of corrosion fatigue;Current Opinion in Colloid & Interface Science;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3