In Situ Observation of Thermoelastic Martensitic Transformation of Cu-Al-Mn Cryogenic Shape Memory Alloy with Compressive Stress

Author:

Bian ZhenyuORCID,Song Jian,Liu Pingping,Wan Farong,Lei Yu,Wang Qicong,Yang Shanwu,Zhan Qian,Chen Liubiao,Wang Junjie

Abstract

The thermoelastic martensitic transformation and its reverse transformation of the Cu-Al-Mn cryogenic shape memory alloy, both with and without compressive stress, has been dynamically in situ observed. During the process of thermoelastic martensitic transformation, martensite nucleates and gradually grow up as they cool, and shrink to disappearance as they heat. The order of martensite disappearance is just opposite to that of their formation. Observations of the self-accommodation of martensite variants, which were carried out by using a low temperature metallographic in situ observation apparatus, showed that the variants could interact with each other. The results of in situ synchrotron radiation X-ray and metallographic observation also suggested there were some residual austenites, even if the temperature was below Mf, which means the martensitic transformation could not be 100% accomplished. The external compressive stress would promote the preferential formation of martensite with some orientation, and also hinder the formation of martensite with other nonequivalent directions. The possible mechanism of the martensitic reverse transformation is discussed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3