Annealing Response of Additively Manufactured High-Strength 1.2709 Maraging Steel Depending on Elevated Temperatures

Author:

Strakosova Angelina,Průša FilipORCID,Michalcová AlenaORCID,Kratochvíl Petr,Vojtěch Dalibor

Abstract

The present work describes the influence of different temperatures on mechanical properties and microstructure of additively manufactured high-strength 1.2709 maraging steel. For this purpose, samples produced by selective laser melting technology were used in their as-printed as well as their heat-treated state. Both samples were than exposed to temperatures ranging between 100 °C to 900 °C with a total dwell time of 2 h followed by water-cooling. The microhardness of the as-printed material reached its maximum (561 ± 6 HV0.1) at 500 °C, which corresponded to the microstructural changes. However, the heat-treated material retained its initial mechanical properties up to 500 °C. As the temperature increased, the microhardness of both the materials reduced, reaching their minimum at 900 °C. This phenomenon was accompanied by a change in the microstructure by forming coarse-grained martensite. This also resulted in a significant decrease in the ultimate tensile strength and an increase in the plasticity. TEM analysis confirmed the formation of Ni3Mo intermetallic phases in the as-printed material when exposed to a temperature of 500 °C. It was found that the same phase was present in the heat-treated sample and it remained stable up to a temperature of 500 °C.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3