Fatigue Analysis and Defect Size Evaluation of Filled NBR including Temperature Influence

Author:

Schieppati JacopoORCID,Schrittesser Bernd,Tagliabue StefanoORCID,Andena LucaORCID,Holzner Armin,Poduška JanORCID,Pinter GeraldORCID

Abstract

The fatigue behavior of a filled non-crystallizing elastomer was investigated on axisymmetric dumbbell specimens. By plotting relevant Wöhler curves, a power law behavior was found. In addition, temperature increases due to heat build-up were monitored. In order to distinguish between initiation and crack growth regimes, hysteresis curves, secant and dynamic moduli, dissipated and stored energies, and normalized minimum and maximum forces were analyzed. Even though indications related to material damaging were observed, a clear trend to recognize the initiation was not evident. Further details were revealed by considering a fracture mechanics. The analysis of the fracture surfaces evidenced the presence of three regions, associated to initiation, fatigue striation, and catastrophic failure. Additional fatigue tests were performed with samples in which a radial notch was introduced. This resulted in a reduction in lifetime by four orders of magnitude; nevertheless, the fracture surfaces revealed similar failure mechanisms. A fracture mechanics approach, which considered the effect of temperature, was adopted to calculate the critical defect size for fatigue, which was found to be approximately 9 μm. This value was then compared with the particle size distribution obtained through X-ray microcomputed tomography (μ-CT) of undamaged samples and it was found that the majority of the initial defects were indeed smaller than the calculated one. Finally, the evaluation of J-integral for both unnotched and notched dumbbells enabled the assessment of a geometry-independent correlation with fatigue life.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3