Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees

Author:

Bilous Andrii1ORCID,Zadorozhniuk Roman1ORCID,Makarevych Anatolii1ORCID,Svynchuk Viktor1ORCID,Lashko Andrii1,Bilous Maksym2,Myroniuk Viktor1ORCID,Matsala Maksym3ORCID

Affiliation:

1. Department of Forest Mensuration and Forest Management, National University of Life and Environmental Sciences of Ukraine (NUBiP), 03041 Kyiv, Ukraine

2. Department of Silviculture, National University of Life and Environmental Sciences of Ukraine (NUBiP), 03041 Kyiv, Ukraine

3. Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 14001 Alnarp, Sweden

Abstract

The sustainable management of urban green areas requires clear and efficient protocols for measuring the biometric properties of tree vegetation. Specifically, operational in situ sampling solutions are essential to inventory forked (multi-stemmed) trees. This study aimed to assess the efficiency of two different sampling protocols for mean tree diameter at breast height (DBH) measurement of forked urban trees. The protocols were tested on a dataset of 76 forked trees, each having more than three stems and sampled in urban areas of Kyiv, Ukraine. First, we tested the efficiency of mean tree DBH estimations using measurements of randomly selected one, two, or three stems (random sampling, or RSM). Second, we examined different combinations of the thinnest, thickest, and average stems (identified visually) for each tree to estimate mean tree DBH (targeted sampling, or TSM). The distributions of mean tree DBH and root mean square errors (RMSE) were utilized to compare the utility of the two approaches. The TSM of three stems (the thinnest, thickest, and average) provided the highest accuracy of mean tree DBH estimation (RMSE% = 6.3% of the mean), compared to the RSM (RMSE% = 12.1%). The TSM of the four thickest stems demonstrated the overestimation of mean tree DBH for forked trees with five or more stems. Accurate mean tree DBH estimates can be derived with negligible systematic errors applying the RSM over a large number of measured trees. However, these estimates will not likely match the measurements from previous inventories due to random stem selection. We recommend using the TSM with measuring three specific stems as a balanced solution in terms of estimation accuracy, bias, and time costs.

Funder

Ministry of Science and Education of Ukraine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3