The Rhizosphere Functional Microbial Community: A Key Driver of Phosphorus Utilization Efficiency in Karst Forest Plants

Author:

Zhou Chunjie1,Chen Danmei12,Zang Lipeng12,Zhang Guangqi12,Liu Qingfu12ORCID,Sui Mingzhen12,He Yuejun1ORCID,Wang Shasha1,Dai Yu1,Wang Lidong3,Bai Ruxia3,Feng Ziyun3,Xiang Fachun3

Affiliation:

1. College of Forestry, Guizhou University, Guiyang 550025, China

2. Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China

3. Mianyang Agricultural Products Quality Safety Inspection and Testing Center, Mianyang 621000, China

Abstract

Microorganisms play a pivotal role in transforming and making phosphorus (P) available in soil through various mechanisms. However, their specific contributions to alleviating P limitation and enhancing P utilization efficiency in plants within the context of a P-deficient karst ecosystem remains unclear. In this study, eco-stoichiometric methods were employed to evaluate the P utilization efficiency of plants grown in the surveyed karst forest located in Guizhou Province, China. Metagenomic sequencing was utilized to further explore the functional genes and microorganisms involved in soil P cycling. The N:P ratio for 18 out of the 20 surveyed plants exceeded 16, indicating widespread P limitation in karst plants. Among them, plants with high P utilization efficiencies (Nandina domestica Thunb.; Mahonia bodinieri Gagnep.; Pyracantha fortuneana (Maxim.) Li) exhibited higher relative abundances of genes involved in soil P cycling compared to plants with low P utilization efficiencies (Tirpitzia sinensis (Hemsl.) Hallier f.; Albizia kalkora (Roxb.) Prain; Morella rubra Lour.), indicating greater potentials within their rhizosphere microbiomes for soil P transformation. The relative abundance of these functional genes had a significant and positive effect on plant P utilization efficiencies. Structural equation modeling further indicated that microbial P cycling gene abundance directly drove the increase in plant P utilization efficiencies. Specifically, genes involved in soil organic P mineralization (G6PD, suhB, phoD, ppx) and the P uptake and transform system (pstS, pstA, pstB, pstC) contributed to the enhancement of plant P utilization efficiencies. Soil microbial communities involved in P cycling were predominately attributed to Proteobacteria (45.16%–60.02%), Actinobacteria (9.45%–25.23%), and Acidobacteria (5.90%–9.85%), although their contributions varied among different plants. The rhizosphere functional microbial community can thus alleviate P limitation in karst plants, thereby enhancing plant P utilization efficiencies. This study investigated the strong synergism between karst plants and rhizosphere microorganisms and their associated underlying mechanisms from genetic and microbial perspectives.

Funder

Basic Research Program in Guizhou Province

Gui Da Te Gang He Zi Program

Cultivation Project of Guizhou University

National Natural Science Foundation of China

Guizhou University Scientific Research Innovation Team Project

Publisher

MDPI AG

Reference129 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3