BlockDeepNet: A Blockchain-Based Secure Deep Learning for IoT Network

Author:

Rathore Shailendra,Pan Yi,Park Jong HyukORCID

Abstract

The recent development in IoT and 5G translates into a significant growth of Big data in 5G—envisioned industrial automation. To support big data analysis, Deep Learning (DL) has been considered the most promising approach in recent years. Note, however, that designing an effective DL paradigm for IoT has certain challenges such as single point of failure, privacy leak of IoT devices, lack of valuable data for DL, and data poisoning attacks. To this end, we present BlockDeepNet, a Blockchain-based secure DL that combines DL and blockchain to support secure collaborative DL in IoT. In BlockDeepNet, collaborative DL is performed at the device level to overcome privacy leak and obtain enough data for DL, whereas blockchain is employed to ensure the confidentiality and integrity of collaborative DL in IoT. The experimental evaluation shows that BlockDeepNet can achieve higher accuracy for DL with acceptable latency and computational overhead of blockchain operation.

Funder

This study was supported by the Advanced Research Project funded by the SeoulTech(Seoul National University of Science and Technology)

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference21 articles.

1. Semi-supervised learning based distributed attack detection framework for IoT

2. A Hesitant Fuzzy Based Security Approach for Fog and Mobile-Edge Computing

3. The Future of Data with the Rise of the IoT https://www.rfidjournal.com/articles/view?17954

4. Deep Learning for IoT Big Data and Streaming Analytics: A Survey

5. Practical approaches based on deep learning and social computing;Park;J. Inf. Process. Syst.,2018

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3