Association Rule Mining Tourist-Attractive Destinations for the Sustainable Development of a Large Tourism Area in Hokkaido Using Wi-Fi Tracking Data

Author:

Arreeras TospornORCID,Arimura Mikiharu,Asada Takumi,Arreeras Saharat

Abstract

The rise of radiofrequency scanner technology has led to its potential application in the observation of people’s movements. This study used a Wi-Fi scanner device to track tourists’ traveling behavior in Hokkaido’s tourism area, which occupies a large region that features a unique natural landscape. Inbound tourists have significantly increased in recent years; thus, tourism’s sustainability is considered to be important for maintaining the tourism atmosphere in the long term. Using internet-enabled technology to conduct extensive area surveys can overcome the limitations imposed by conventional methods. This study aims to use digital footprint data to describe and understand traveler mobility in a large tourism area in Hokkaido. Association rule mining (ARM)—a machine learning methodology—was performed on a large dataset of transactions to identify the rules that link destinations visited by tourists. This process resulted in the discovery of traveling patterns that revealed the association rules between destinations, and the attractiveness of the destinations was scored on the basis of visiting frequency, with both inbound and outbound movements considered. A visualization method was used to illustrate the relationships between destinations and simplify the mathematical descriptions of traveler mobility in an attractive tourism area. Hence, mining the attractiveness of destinations in a large tourism area using an ARM method integrated with a Wi-Fi mobility tracking approach can provide accurate information that forms a basis for developing sustainable destination management and tourism policies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3